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of the ordinary rotation function, as all molecules 
present are accounted for. In fact, in the test case, 
the correlation coefficient is consistent with the frac- 
tion of the structure present in the search model. This 
symmetry-corrected rotation function may therefore 
provide a more objective measure of the reliability 
of possible rotation function solutions. 

The ideas presented here also have implications 
for symmetry effects in self-rotation functions. Our 
analysis suggests that signal amplification will occur 
at orientations that leave the point-group symmetry 
of the crystal invariant. For example, in space group 
P3, we expect anomalously high peaks at orientations 
corresponding to 180 ° rotations about axes perpen- 
dicular to the threefold crystallographic symmetry 
axis. 

Discussions with D. C. Rees, B. T. Hsu and C. E. 
Nordman are appreciated. This is publication no. 
5597-MB of the Research Institute of Scripps Clinic. 
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Abstract 

Recently near-Gaussian distributions have been of 
much interest in the field of crystallographic statistics. 
In the present work, expressions for a truncated 
Cauchy distribution corresponding to acentric and 
centric cases have been derived. Expressions for P+, 
the probability of sign relations for centric crystals, 
and for P~, the probability of the tangent relationship 
for acentric crystals, have been derived on the basis 
of the Cauchy distribution of structure factor com- 
ponents. Theoretical N(Z)  curves for centric and 
acentric Cauchy distributions have been compared 
with those for acentric, centric and bicentric Gaussian 
distributions. The N(Z)  curve for the Cauchy acen- 
tric distribution follows closely that for the Gaussian 
acentric up to Z = 0.5. It then takes an upward turn 
and surpasses the Gaussian bicentric curve at high Z 
values. A similar trend is shown by the N(Z)  curve 

for the Cauchy centric distribution after being 
approximately intermediate between the Gaussian 
centric and bicentric cases up to Z = 0-5. The results 
of P+ and P~ have been compared with some known 
crystal data and the agreement is quite satisfactory 
for the cases studied. 

1. Introduction 

The intensity statistics introduced by Wilson (1949, 
1950) and its further extension to the phase problem 
by Cochran & Woolfson (1955) and by Cochran 
(1955) were based on the hypothesis that the struc- 
ture-factor components obey the Gaussian probabil- 
ity distribution law. Bertaut (1955, 1960), Klug (1958), 
Mitra & Belgaumkar (1973), Shmueli (1979), Shmueli 
& Wilson (1981) and others have used near-Gaussian 
functions like the Gram-Charl ier  and Edgeworth 
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series, as well as Fourier and Fourier-Bessel functions 
(Wilson, 1986) to represent the distribution law of 
the structure amplitudes. Mitra & Ghosh (1982) have 
shown that the N(Z)  test indicates which type of 
distribution is obeyed by the crystal. 

One near-Gaussian distribution - the Cauchy or 
Lorentzian distribution, having no finite moment 
apart from above and the first - is looked upon with 
suspicion. But one never works with a distribution 
function ranging between + ~ ;  the function is cut off 
on the surface of the sphere of reflection. Thus we 
are actually dealing with a truncated Cauchy distribu- 
tion function for which second and higher moments 
exist. The aim of the present work is to explore the 
possibilities of the truncated Cauchy functions as 
distribution functions in crystallographic statistics. 
Expressions for P÷, the probability of the sign relation 
for centric crystals, and P~, the probability of the 
tangent relationship for acentric crystals, are derived. 
Theoretical N ( Z )  curves for acentric and centric 
Cauchy distributions are compared with acentric, 
centric and bicentric Gaussian distributions and the 
results are applied to some known crystal structures. 

2. The distribution function and its consequences 

Let us consider a crystal with N equal atoms placed 
randomly in a P1 unit cell. The normalized structure 
factor Eh for index h is given by 

j i 

where Fh is the crystal structure factor and f2 the 
scattering factor of the j th atom. 

The cumulative probability distribution N(Z)  is 
defined by 

Z 

N ( Z )  = ~ P(Z) dZ 
0 

where P(Z) dZ is the probability of Z lying between 
Z and Z+dZ ,  Z being equal to ]El 2. 

(i) Acentric case 

Let the probability distribution function be rep- 
resented as 

P ( E ) = C / ( I + E 2 ) ,  (1) 

where C is the normalization constant and comes out 
to be 1/7r within the limits 4- 0o and 2/~r for the limits 
between 0 and 0o. 

Let the probability distribution function be of the 
form 

P(E)=(m/Tr)[1/(I+E2)] (m> 1), ( la )  

as for the truncated Cauchy distribution the limits 
are not specified and m is an adjustable parameter. 

Let 

Eh = Xh + i Yh 

where Xh and Yh are the real and imaginary com- 
ponents of Eh. 

The joint probability distribution P(Xh, Yh) of Xh 
having a value between Xh and Xh+ dXh and of Yh 
between Yh and Yh+ d Yh is given by 

P(Xu, Yh) dXu d Yh 

=(m2/zr2)[1/(1 + X2)][1/(1 + y2)] dXh dYn. 

( lb)  
This gives the probability of a point (Xh, Yh) having 

a structure factor Eh within the area of dXh d Yh in 
the complex plane containing (Xh, Yh). For all points, 
the probability of the structure factor lying in the 
range ]Eh] and ]Ehl+dlEh[ is given by 

P(Xh, Y.)2~'IE.I diE,,[ = P(IEd 2) dlEh] 2, 
(lc) 

P(IEhl 2) = ~P(Xh, Y,,). 
From (lb)  and (lc) we find that the distribution of 
Z = ]El 2 for Z lying between Z and Z + d Z  is given 
by 

P(Z) = (m2/,n -) 

× [(1 + Z)  cos 2 (29~h) + (1 + Z/2)  2 sin 2 (29~h)] -1, 

(2) 

where 9~h = tan -1 YJXh .  The cumulative probability 
distribution No(Z) obtained from (2) is 

Z T r  

No(Z)=(m2/Tr) ~ ~ [(1 + Z )  cos2 (2¢Ph) 
0 0 

+(1 + Z/2)  2 sin 2 (2q~h)] -1 dq~h dZ 

= 4m2{tan-l[(1 + Z)]'/Z-'rr/4}. (3) 

The joint probability of IEhl lying between [Ehl and 
Eh + d  Ehl and that of q~h lying between ~0h and 

¢Ph+dq~h about their mean values as obtained from 
(lb) is given by 

P(goh, Ie.l)= (mE~ 7r){1 + (IEhl- (IE.I)) z 

+ [(I/7~1-<1E.1))4/83 

x [ 1 - cos 4( q~, - (q~h)) 7} -1. 

(IEh[) and (~0h) are the mean values of [Ehl and ~0h 
respectively. From this, after some simple calcula- 
tions, we arrive at the expression 

P(q~h, IEhl, E~, E._~) 
= (m2/7r)[ 1 + (IEh]- N-1/2lEkEh_d) 2 

+&(lEvi- N-l/2lEkEh-k])4]-I 

X [ 1 --COS 4(q~h-- (~0h))] -1 (4) 

=(m2/'n')[1 + r2+(r4/8)(1--COS4~phk)] -1, (4a) 
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where 

r=  l E d -  N-'/2lEkEh-kl 

(4b) 
(~0h) = q~k+ ~0h-k 

(IEhl) = N-'/ZlEkEh_kl. 
The conditional probability P(~0hllEhl, Ek, Eh-k), 

written as P(~h) (since [Ehl, Ek, Eh-k are known), is 
obtained from 

P(~h, IEhl, E~, Eh-k) 
P(~h)=j .  ° p(tph, lEhl, Ek, Eh_k) dq9 h. (5) 

Evaluating the integral of the demoninator of (5) and 
substituting the value of r etc. from (4b), we get 

1 (I+A)A ~/2 
P(~Ph)- (6) 

2rr A +  B(1 - cos  4~Phk) 

where 

and 

A =  1 + r 2= 1 +lEhl ~+ IE~Eh-klZ 21E31 N N,/2 (6a) 

r4 1 [iEh,4+ 21E3[ ( ~ _  2[Ehl2 B 

-t N2 j (6b) 

I E31 = I EhEkEh-kl- 

Again, for P(cPn) to be maximum in (6), the 
denominator would be minimum with 

d 
~ [ A  + B(1 - c o s  4q~hk)] =0 
dq~h 

(A and B are fixed and non-zero quantities). 
This gives 

~Oh,k : ~ h -  ~ O k -  ~ O h - k  : O,  

which is the triplet relationship. Thus 

The probability density function as obtained from 
(8a) is given by 

P,(E) d(E)=(m/Trx/2)(l+E2/2)-'d(E). (9) 

With this formalism, the expression for NI(Z)  is 

N,(Z)=(4m/Tr)tan-' (Z/2) '/2. (10) 

If (E.) is the mean of the structure factors, we have 

P(Eu)=(m/Tr~/2)[I+½(Eh-(Eh))2] -'. (11) 

Evaluating the mean value of Eh (Woolfson, 1954) 
and substituting this in (11), we get 

P(Eh) = (m/7rx/2) [ 1 + 1(Eh-- N -~/2 Eu Eh-k)2] -~. 

(12) 

When Sayre's probabilistic relation Eh"-EkEh-k is 
valid E. will have the same sign as EkEh-k. Indicating 
by P÷ or P_ respectively the probability of E. having 
the same sign as EkEh-A and the reverse, we have 

P_ 1 +½(E h -  N-1/2EkEh_k) 2 
P + -  1 +½(Eh+ N-1/2EkEh-k) 2' (13) 

and after some simplifications, we finally obtain 

P+ 2 2_I+½(IEhI=+N-'IEkEh_kl2)]" (14) 

Equation (14) can be used to estimate the sign of [E,I. 

(7) 

3. Results 

The N(Z) functions have been calculated from (3) 
and (10) by putting m = 1 when the function reaches 
the value of one for Z = 2 in centric and Z = 1.83 in 
acentric cases, and these are shown in Fig. 1 along 
with Gaussian acentric, centric and bicentric cases. 
The Cauchy and Gaussian acentric curves are nearly 
the same up to Z = 0 . 5  and then the difference 
increases gradually, the Cauchy acentric curve going 
beyond the Gaussian bicentric and Cauchy centric 
curves. 

The Cauchy centric curve is approximately inter- 
mediate between the Gaussian centric and bicentric 

d ~ h , k  = dq~h (since ~ k  and ~ 0 h _  k are known) 
1.0 . - . ~ "  ~ -  

and the distribution of q~h is identical to that of (~0hk. ..:-=7 . . . . .  

(ii) Centriccase _Io.8f ~ 
Let the distribution be given by °'s t ~ ~ ~ " ~  

/ / , /  . . ' ~  
C'  being the constant of normalization which is O2rL,/. j 
1/(TrV~) within the limits +oo and x/2/7r for limits 0 

i , , i , i i i i i i i I i I i i t i and oo. Thus the distribution will be 0 0.2 0.4 0.6 0.8 ,.0 ,.2 ,., ,.6 ,., ;.o 
Z = 

P(E)=(m/Tr~)(I+E2/2) -t, (8a) 
Fig. 1. Comparison of the theoretical distribution N(Z) for 

m having the same significance as in the acentric case. Gaussian (solid lines) and Cauchy (broken lines) distributions. 
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Table 1. Probability calculations for signs of reflections for a-naphthil 

[Ehl is given by the figures within the brackets; the figures outside the brackets are the Miller indices of  the reflection. 

Entry 
number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

Values of  P÷ from 
Magnitude Sign Magnitude Sign Magnitude Sign Observed signs of  Cauchy Gaussian 

of E h of  E h of E k of  E k of  Eh_ k of  Eh_  k E k E h _  k E h distribution distribution* 
062 - 512 - 554 - + - 0.66 0.97 

(2.961 ) ( 1.841 ) (2.036) 
115 + 435 + 320 - - + 0.68 1.00 

(3.694) (2.584) (2.129) 
635 + 315 - 340 + - + 0.68 0.97 

(2-596) (2.262) ( 1.969) 
i i 5  + 947 + 832 - - + 0.66 0-99 

(3.694) (2.279) (2.053) 
826 + 462 - 7144 + - + 0.60 0.88 

(2.681) (1.867) (1.345) 
662 + 303 - 3~ i  + - + 0.65 0.96 

(2.908) (2.062) (1.819) 
115 + 433 - 522 + - + 0-57 0-91 

(3"694) (1"416) (1"510) 
32~, - 522 + 2~,ff. + + - 0.62 0.91 

(2.716) (1.724) (1.694) 
1~,1 + 475 + 434 + + + 0.69 0.91 

(1.947) (2.170) (1.916) 
742 - 30 i  + 7143 - - - 0.80 0.90 

(1.971) (3.317) (1.946) 
301 + 274 + 175 + + + 0.71 1.00 

(3.317) (2.495) (2.431 ) 
3 i l  + 40 i  - 7 i2  - + + 0.72 0.99 

(2.959) (2-910) (2-052) 
062 - 862 + 804 - - - 0.89 1.00 

(2-961) (4-721) (2-762) 
42,2 - 61ft. + 1050 - - - 0-82 1-00 

(2.577) (2.958) (3.031 ) 

* P+ (Gaussian distribution) is calculated from P+ =~+½ tanh (N-t/2lEhEkEh_k[). 

curves up to Z = 0.5. It has the same value at Z = 0.6 
as the Gaussian bicentric curve and after that it 
ascends, gradually surpassing the Gaussian bicentric 
case at high Z values. 

Fig. 2 shows the experimental N(Z) plots for 
betulin diacetate (Das, Mukherjee & Ray, 1983) crys- 
tallizing in space group P2~2~21 along with the theo- 
retical Cauchy acentric distribution curve. The N(Z) 
plots reveal quite well that the distribution is of 
Cauchy acentric type. The programme MULTAN78 

I 0.6 %'o P-"  
e,,. "o / "  

0.4 

9" .~, 
0-2 / t 

/CI I / 
0 " El 

0'.2 0'.4 0'.6 0'.8 1'.0 112 1'-4 1~5 1'.8 Z'-O 
Z 

Fig .  2. Comparison of  theoretical Cauchy N(Z) values with 
experimental data for betulin diacetate (squares), a-naphthil 
(open circles), 2,6-dibutyryl-4-methylphenol (triangles) and 
5,9-dimethoxy-3,3,8-trimethyl-7,10-dihydro-3 H-naphtho[2,1-b]- 
p y r a n - 7 , 1 0 - d i o n e  (solid circles). 

(Main, Hull, Lessinger, Germain, Declercq & 
Woolfson, 1978) showed acentric distribution of 
intensity. 

In the same figure are shown the experimental 
N(Z) values of a-naphthil (Mukherjee, Biswas, Ray 
& Sen, 1987), 2,6-dibutyryl-4-methylphenol (Ray & 
Sen Gupta, 1986), both crystallizing in space group 
P1 and 5,9-dimethoxy-3,3,8-trimethyl-7,10-dihydro- 
3 H-naphtho[2,1-b]pyran-7,10-dione (Hall, Raston & 
White, 1978) crystallizing in space group P2~/n. It is 
observed that the N(Z) values of the three structures 
agree fairly well with the theoretical centrosymmetric 
distribution of Cauchy type. The program NORMAL 
(MULTAN80; Main, Hull, Lessinger, Germain, 
Declercq & Woolfson, 1980) gave hypersymmetric 
N(Z) values for both the P1 crystals, and the third 
crystal had a history of MULTAN failures. Tables 1 
and 2 show the observed magnitudes and signs of the 
structure amplitudes with the probability values 
calculated therefrom for a-naphthil and 2,6- 
dibutyryl-4-methylphenol respectively. 

Sayre's (1952) sign relationship for P1 crystals 
demands that EkEn-k has the same sign as that of Eh 
so that the product will be positive. The probability 
for this to happen if the structure-factor components 
have a Gaussian distribution has been calculated by 
Cochran & Woolfson (1955). In Table 1, entry 4 shows 
that the probability of the sign of reflection 115 
being negative is 99% according to the Gaussian 
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E n t r y  

n u m b e r  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Table 2. Probability calculations for signs of reflections for 2,6-dibutyryl-4-methylphenol 

[Ehl is g i v e n  b y  t h e  f i g u r e  w i t h i n  t h e  b r a c k e t s ;  t h e  f i gu re s  o u t s i d e  t h e  b r a c k e t s  a r e  t h e  M i l l e r  i n d i c e s  o f  t h e  r e f l e c t i o n .  

V a l u e s  o f  P÷ f r o m  
M a g n i t u d e  S i g n  M a g n i t u d e  S i g n  M a g n i t u d e  S i g n  O b s e r v e d  s igns  o f  C a u c h y  G a u s s i a n  

Of Eh o f  E h o f  Ek o f  Ek o f  Eh_k Of E h - k  EkEh-k E h d i s t r i b u t i o n  d i s t r i b u t i o n *  

155 + 236 - i2T + - + 0.63 0.73 
(1.261) (1.773) (1-327) 

122 + 433 - 355 + - + 0.55 0.83 
(2-789) (1.416) (1.216) 

358 + i23 + 435 - - + 0.57 0.79 
(2.600) (1.239) (1.230) 

30 i  + 134 + 233 - - + 0.58 0.83 
(1.927) (1.220) (2.008) 

433 - 30 i  + 134 + + - 0.63 0.77 
(1.498) (1.927) (1.220) 

323 - 200 - 523 - + - 0.68 0.82 
(2.104) (1.394) (2.319) 

324 - 522 - 242 - + - 0-64 0-94 
(2.716) (1.724) (1.694) 

214 + 532 + 322 - - + 0.60 0-88 
(2.770) (1.896) (1.105) 

. . . .  

111 + 262 - 173 - + + 0.72 0-86 
(1.246) (2-788) (1.574) 

138 - 2 i0  - i48 + - - 0.81 0.97 
(1.488) (2-064) (3-394) 

225 + i7T + 35g + + + 0-80 0.98 
(1.957) (2.905) (2.175) 

_ _  

425 - 237 - 212 + - - 0.84 1.00 
(1.954) (2.204) (3.657) 

* P+ (Gaussian distr ibution) is calculated from P+ = ~+~l l tanh (N-t/2[EhEaEh_kl). 

distribution and that the probability calculated from 
(14) assuming the distribution to be of the truncated 
Cauchy form is 66%. The actual sign of the reflection, 
after solving the structure (a-naphthil) ,  is found to 
be positive and similar results are shown in entries 
1-8 in the same table. In Table 2, it is observed that 
the probability for the reflection 324 (entry 7) to be 
positive is 94% according to the Gaussian distribution 
and that from (14) is 64% while the actual sign of 
the reflection is found to be negative and other similar 
results are shown in entries 1-8. Again, the values of 
the probabilities of 70% and higher, shown in entries 
9-14 in Table 1 and in entries 9-12 in Table 2, indicate 
the correct signs of structure amplitudes for the trun- 
cated Cauchy distribution. The Cauchy distribution 
[(14)] shows that the value of P÷ depends not only 
on the product N-~/2[EhEkEh_kl , but also on the sum 
of the two squares, i.e. IEhl2+ N-'lEhEkE~_kl ~. Thus 
the truncated Cauchy distribution gives a better esti- 
mate of the crystal structures studied than the 
Gaussian distribution hypotheses. 

To calculate the values of P(CPh) for the Gaussian 
and the Cauchy distribution, the experimental data 
of L-arginine.2H20 (Karle & Karle, 1964), crystalliz- 
ing in space group P2~2~2~, were used. For the 
Gaussian distribution the values are calculated from 
the well known Cochran distribution (Cochran & 
Woolfson, 1955), and for the truncated Cauchy distri- 
bution these are calculated from (6) at ¢hk = 0. 

The triple phase relationship of Sayre for a P1 
crystal shows that the sum of the phases of two 
reflections in the triplet will give the most probable 

value of the phase of the third reflection. According 
to this the probability of the phase of Eo,sA 4 (IE1o,8,,,-- 
3.07, ~Po,8,,, = 7r) to be zr/2, as obtained from the 
phases of E286 (1EI286 = 1.87, ~o286 = 7r/2) and E~o8 
(IEl~os--2.59, ~O~o8 = 0), is 0.79 for the Gaussian and 
0.48 for the truncated Cauchy distribution. The actual 
phase of the reflection obtained is zr. Similar situations 
are observed in some other combinations of triple 
phases showing that the Gaussian distribution over- 
estimates the incorrect values of the corresponding 
phases while the Cauchy distribution appears not to 
depend upon these values. Again, the probable value 
of the phase of E~,o,~o (1E1~,o,~o=3"46, q~,o,~o = zr) 
obtained as zr, from the phases of Eo,3A o (1EIo,3,~o-- 
1"85, ~Po,3Ao=Tr/2) and E~o (1E1~o=2"17, ~ o  = 
7r/2), is 74% for the Gaussian and 54% for the 
Cauchy distribution. Similar results are obtained for 
the probable values of P(~oh) calculated from some 
other triplets. This indicates that a value of 50% for 
a probable phase obtained from the truncated Cauchy 
distribution may be acceptable as one is not interested 
in the actual value of the same. However, for the 
acentric case, the Gaussian distribution is better (cf. 
Appendix) than the truncated Cauchy distribution, 
but the certainty of the result is marginal in the cases 
studied. Further studies are in progress to arrive at a 
more definite conclusion. 

Concluding remarks 

The present study shows that the truncated Cauchy 
distribution may give an alternative method for esti- 



G. B. MITRA AND SABITA DAS 319 

mating the signs or phases of triplets and more tests 
need to be carried out to confirm the effectiveness of 
this procedure. The authors will report on a formalism 
for the bicentric case very soon. It would therefore 
be advantageous to incorporate the Cauchy distribu- 
tion in a routine which computes normalized structure 
amplitudes I E[ and also evaluates the experimental 
statistics of this quantity and compares the 
experimental values with the possible theoretical 
distributions. 

The authors are grateful to Professor A. Mukherjee 
of the Saha Institute of Nuclear Physics, Calcutta 
700009, India for giving them the opportunity to use 
the computer. The authors thank Mr P. K. Das for 
supplying data for betulin diacetate, Professor S. R. 
Hall for supplying data for 5,9-dimethoxy-3,3,8-tri- 
methyl - 7,10 - dihydro - 3 H - naphtho[2,1 - b]pyran - 
7,10-dione, Dr M. Mukherjee and Dr S. Biswas for 
supplying data for a-naphthil, Dr T. Ray for supply- 
ing data for 2,6 dibutyryl-4-methylphenol and Miss 
A. Sen Gupta for scrutinizing the calculations. One 
of the authors (GBM) is indebted to the Council of 
Scientific and Industrial Research, Government 
of India, for financial support. 

A P P E N D I X  

We have for the intensity of reflections (I)  from a 
crystal plane X2+ y 2 =  I. For a given I, 

X d X +  Y d Y = 0  (A1) 

(since dI  = 0, for a fixed value of I) 

P ( X ) P (  Y )  = P ( I )  (A2) 

P ' ( X ) P ( Y ) d X + P ' ( Y ) P ( X ) d Y = O  (A3) 

[since d P ( X ) / d X  -- P ' (X) ,  and P' ( I )  = 0]. Dividing 
(A3) by (A2), we obtain 

P ' (X)  . P ' (Y)  
p(x----~dX-t- p - - ~ d Y = O .  (A4) 

Multiplying (A1) by a (a constant) and adding (A4) 
we get 

~--~-:T7.,,+aX d X +  + a Y  d Y = 0  (A5) 
r ( A )  [. P ( Y )  

P ' ( X )  
~ - ~ -  a X  = 0 (A6) 
P ( X )  

[since the terms within the brackets in (A5) are inde- 
pendent of each other]. 

In P ( X )  = - a X 2 / 2 + l n  fl, 

where fl is a constant [by integrating (A6)]. 

P ( X )  = 13 exp ( - a X 2 / 2 ) .  (A7a) 

Similarly 

P( Y)  = y exp ( - a  y2 /2 )  (A7b) 

where y is a constant. Equations (A7a) and (A7b) 
show that P ( I )  has a great tendency to have a 
Gaussian distribution in the acentric case. 
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